
EEGs and ERPs for Personnel Assessment: Reality or Fantasy?

Len Trejo*
Department of Psychology
University of Illinois at Urbana-Champaign

Rationale

- ♦ Behavioral measures predict performance
 - Sensory and perceptual sensitivity
 - Specific cognitive abilities (spatial, verbal, etc.)
 - General intelligence
 - Training performance
- ◆ <u>Processes</u> link brain activity and behavior
- **♦** Brain activity predicts performance

Linking Processes

- Perceiving
 - Detecting
 - Discriminating
 - Recognizing
 - Orienting
- ◆ Understanding
 - Identifying
 - Evaluating
 - Combining

- ◆ Interacting
 - Attending
 - Engaging
 - Searching
 - Responding
- ◆ Expecting
 - Context updating
 - Anticipating
 - Predicting

Links to Brain Activity

- Perceiving
 - P1, N1, P2, MMN
 - Alpha blocking
 - Gamma
- Understanding
 - P300
 - -N400
 - DM

- ◆ Interacting
 - Processing negativity
 - Selection negativity
 - Slow wave, ERN
 - EEG: Beta, Gamma
- ◆ Expecting
 - CNV
 - Lateralized readiness potential

Civilian Personnel Testing

(Linn, 1982)

	Predicitive validity for job performance	
	proficiency	
Group	Training scores	Aptitude scores
Clerks	.47	.27
Fire, police	.35	.23
Hospital attendants	.54	.03
Vehicle operators	.15	.14

Military Personnel Testing: 1952-1982

(Vineberg & Joyner, 1982)

Measure	Correlation with aptitude	
	scores	
Job knowledge	.40	
Job sample tests	.1035	
Composite suitability	.24	
Global job performance	.15	

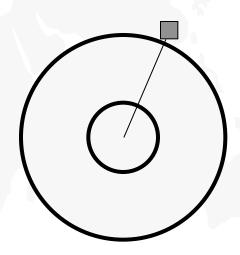
Case #1: IQ/Aptitude Testing

- ◆ Model #1: Speed of the EEG or ERP
 - Basic ideas
 - + cortical excitability cycle (Lindsley, 1952)
 - + decay of short-term or working memory
 - EEG frequency & intelligence
 - Berger (1932), Mundy-Castle (1958), Saunders (1961) (but many exceptions):
 - ERP latency & intelligence
 - + Chalke & Ertle (1965), Ertle & Schafer (1969), but see Griesel (1973)

♦ Model #2: Complexity

- Basic ideas
 - + Errors reduce complexity of ERP
 - → Higher dimensionality implies intelligence
- "String" measure: Hendrickson & Hendrickson (1980), Hendrickson & Blinkhorn (1982)
- EEG dimensionality (Lutzenberger et al, 1994)
- ♦ Model #3: Variability
 - Psychopathology & variability (Callaway, Jones, & Donchin, 1970; Callaway, 1975)
 - "TTV" measure and recruit classification (Lewis, Rimland, & Callaway, 1977)

- ◆ Status of IQ/aptitude testing: <u>Fantasy</u>
 - Significant differences appear only during passive conditions
 - During passive conditions there is no control for processing differences
- Possible new directions
 - Apply new information relating structure and function (e.g. WM and source localization in prefrontal and cingulate cortex)
 - Use tasks that demand specific processing resources


Case #2: Performance Assessment

- ♦ Model #1: Arousal / alertness
 - Alertness detection and EEG
 - Theta suppression & vigilance (Beatty & O'Hanlon, 1979)
 - "Spectral signature" of alertness decrement (many examples, recently Makeig & Inlow, 1993)

- ♦ Model #2: Mental Resource Allocation
 - Basic idea: limited capacity of central executive (Kahneman, 1972)
 - Modern version: multiple resource pools (Wickens, 1984)
 - Applications:
 - Dual-task method (Chambana group: Donchin, Wickens, Kramer, Israel, & a cast of thousands)
 - ◆ Irrelevant-probe method (Hernandez-Peon, 1958; more recently Trejo, et al.)

Example #1: Radar Monitoring Workload

- ◆ Air Defense Radar Simulation @ three levels of difficulty
 - N=30 subjects
 - Diffuse visual probes
 - 40% reduction in ERP amplitude
 - Fz-Cz @ 127 ms
 - Fz-Cz @ 330 ms

Example #2: Signal Detection Performance

- Navy technicians
- ◆ Baseline condition
- ◆ Active condition
 - Detect NTDS symbols
 - 3 contrast levels
 - 2.5-3.5 s ITI
 - Classify
- **♦** Probes
 - Brief, diffuse
 - 526-1576 ms SOA

Results

Symbol ERPs

- ♦ Baseline vs. active
 - Slow wave larger in active condition
- Active condition
 - P3 larger on correct, fast, confident trials

Probe-ERPs

- ♦ Baseline vs. active
 - N2 larger in baseline condition
 - P3 larger in baseline condition
- **◆** Active condition
 - No effect

Discussion

Symbol ERPs

- Slow wave reflects engagement
- ◆ P3 reflects quality or quantity of taskrelevant information

Probe ERPs

N2-P3 reflect disengagement

Example #3: EW simulation

- ◆ 10 experienced EWs
- ◆ Baseline
 - Auditory oddball
 - Distraction
- ♦ 1-hr mission scenario
 - OTD
 - Auditory probes
 - North Atlantic scenario

Results

Baseline task

- Deviant tones
 - Large N1, N2
 - P3 elicited only by target deviants
- Deviant vs. standard
 - Mismatch negativity for both deviants

Scenario

- **♦** Standard tones
 - Reduced N1, N2
- Deviant tones
 - No P3
 - Reduced N1, N2
 - Reduced MMN
- ♦ Both
 - reductions covary with scenario complexity

Discussion

P3

- Reflects engagement in the scenario
- Similar results in Boeing helicopter study

N1, N2, MMN

- Reflect attention to the probes
- Covary with scenario complexity
- Why attend to probes?
 - Attention is captured by transient stimuli
 - Except when focused

Schemas and performance: Some hypotheses

- ◆ Engagement means schema selection
 - Slow waves reflect schema selection
- **♦** Schemas are compared to situation data
 - Mismatch between schema and situation forces a schema update
 - P3 reflects schema update

Attention capture and performance: Some more hypotheses

- ♦ When attention is not focused...
 - A schema is not selected
 - Transient stimuli capture attention
 - Probes elicit N1, N2, and MMN
 - No P3
 - ◆ Processing aborted before schema selection
 - P3/slow wave elicited
 - + Schema selection and activation

Conclusions

- ◆ Status of performance assessment: Reality
- ERPs tell us about performance
 - When performance fails due to inattention
 - When demands of the task exceed the resource allocations
- ◆ EEG measures tell us about alertness
- **♦** Future directions:
 - Adaptive systems
 - Job performance aids
 - Adaptive training